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A B S T R A C T  
Traditional statistical speech recognition systems typically 
make strong assumptions about the independence of obser- 
vation frames and generally do not make use of segmental 
information. In contrast, when the segmentation is known, 
existing classifiers can readily accommodate segmental infor- 
mation in the decision process. We describe an approach to 
connected word recognition that allows the use of segmental 
information through an explicit decomposition of the recog- 
nition criterion into classification and segmentation scoring. 
Preliminary experiments are presented, demonstrating that 
the proposed framework, using fixed length sequences of cep- 
stral feature vectors for classification of individual phonemes, 
performs comparably to more traditional recognition ap- 
proaches that use the entire observation sequence. We expect 
that performance gain can be obtained using this structure 
with additional, more general features. 

1. I N T R O D U C T I O N  
Although hidden-Markov-model (HMM) based speech 
recognition systems have achieved very high perfor- 
mance, it may be possible to improve on their perfor- 
mance by addressing the known deficits of the HMM. 
Perhaps the most obvious weaknesses of the model are 
the reliance on frame-based feature extraction and the 
assumption of conditional independence of these features 
given an underlying state sequence. The assumption of 
independence disagrees with what is known of the ac- 
tual speech signal, and when this framework is accepted, 
it is difficult to incorporate potentially useful measure- 
ments made across an entire segment of speech. Much of 
the linguistic knowledge of acoustic-phonetic properties 
of speech is most naturally expressed in such segmental 
measurements, and the inability to use such measure- 
ments may represent a significant loss in potential per- 
formance. 

In an a t tempt  to address this issue, a number of mod- 
els have been proposed that  use segmental features as 
the basis of recognition. Although these models al- 
low the use of segmental measurements, they have not 
yet achieved significant performance gains over HMMs 

*This research was jointly funded by NSF and DARPA under 
NSF grant number IRI-8902124. 

because of difficulties associated with modeling a vari- 
able length observation with segmental features. Many 
of these models represent the segmental characteristics 
as a fixed-dimensional vector of features derived from 
the variable-length observation sequence. Although such 
features may  work quite well for classification of individ- 
ual units, such as phonemes or syllables, it is less obvious 
how to use fixed-length features to score a sequence of 
these units where the number and location of the units 
is not known. For example, simply taking the product  
of independent phoneme classification probabilities using 
fixed length measurements is inadequate. If this is done, 
the total number of observations used for an utterance 
is F x N,  where F is the fixed number of features per 
segment and N is the number of phonemes in the hypoth- 
esized sentence. As a result, the scores for hypotheses 
with different numbers of phonemes will effectively be 
computed over different dimensional probabili ty spaces, 
and as such, will not be comparable. In particular, long 
segments will have lower costs per frame than short seg- 
ments. 

In this paper, we address the segment modeling prob- 
lem using an approach that  decomposes the recognition 
process into a segment classification problem and a seg- 
mentation scoring problem. The explicit use of a clas- 
sification component allows the direct use of segmental 
measures as well as a variety of classification techniques 
that  are not readily accommodated with other formu- 
lations. The segmentation score component effectively 
normalizes the scores of different length sequences, mak- 
ing them comparable. 

2. C L A S S I F I C A T I O N  A N D  
S E G M E N T A T I O N  S C O R I N G  

2.1. G e n e r a l  M o d e l  

The goal of speech recognition systems is to find the most 
likely label sequence, A = al ,  ..., air given a sequence of 
acoustic observations, X. For simplicity, we can restrict 
the problem to finding the label sequence, A, and seg- 
mentation, $ = s l , . . . , S N ,  tha t  have the highest joint 
likelihood given the observations. (There is typically no 
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explicit segmentation component in the formulation for 
HMMs; in this case, the underlying state sequence is 
analogous to the segmentation-label sequence.) The re- 
quired optimization is then to find labels A* such that 

A* = argmaxp(A,S IX) 
A,S 

= argmaxp(A, S, X). (1) 
A,S 

The usual decomposition of this probability is 

p(A, S, X) = p(X [ A, S)p(S [ A)p(A) (2) 

as is commonly used in HMMs and has been used in our 
previous segment modeling. However, we can consider 
an alternative decomposition: 

p(A, S, X) = p(A [ S, X)p(S, X). 

In this case, the optimization problem has two compo- 
~C1 nents a lassffication probability," p(A I S,X), and a 

"probability of segmentation", p(S, X). We refer to this 
approach as classification-in-recognition (CIR). 

The CIR approach has a number of potential advan- 
tages related to the use of a classification component. 
First, segmental features can be accommodated in this 
approach by constraining p(A ] X, S) to have the form 
p(A I Y(X), S), where y(X) is some function of the orig- 
inal observations. The possibilities for this function in- 
clude the complete observation sequence itself, as well 
as fixed dimensional segmental feature vectors computed 
from it. A second advantage is that a number of different 
classifiers can be used to compute the posterior proba- 
bility, including neural networks and classification trees, 
as well as other approaches. 

To simplify initial experiments, we have made the as- 
sumption that phoneme segments are generated inde- 
pendently. In this case (1) is rewritten as 

A* = argmax H p(ai I X(sl), si)p(si, X(si)) 
A,S i 

where ai is one label of the sequence, si is a single seg- 
ment of the segmentation 1, and X(sl) is the portion of 
the observation sequence corresponding to si. Segmental 
features are incorporated by constraining p(a~ IX(s0, s~) 
to be of the form p(a~ If(X(sl)), s0, as mentioned above. 

There are a number of segment-based systems that take 
a classification approach to recognition [1, 2, 3]. With 
the exception of [2], however, these do not include an ex- 
plicit computation of the segmentation probability. Our 

1 If si is defined as the start and end times of the segment,  
clearly consecutive si are not independent. To avoid this problem, 
we think of si as corresponding to the length of the segment. 

approach differs from [2] in the types of models used and 
in the method of obtaining the segmentation score. In 
[2], the classification and segmentation probabilities are 
estimated with separate multi-layer perceptrons. 

2 .2 .  C l a s s i f i c a t i o n  C o m p o n e n t  

The formulation described above is quite general, allow- 
ing the use of a number of different classification and seg- 
mentation components. The particular classifier used in 
the experiments described below is based on the Stochas- 
tic Segment Model (SSM) [4], an approach that uses seg- 
mental measurements in a statistical framework. This 
model represents the probability of a phoneme based on 
the joint statistics of an entire segment of speech. Several 
variants of the SSM have been developed since its intro- 
duction [5, 6], and recent work has shown this model to 
be comparable in performance to hidden-Markov model 
systems for the task of word recognition [7]. The use of 
the SSM for classification in the CIR formalism is de- 
scribed next. 

Using the formalism of [4], p(X(8i)[8i, ai) is character- 
ized as p(f(X(si))[si ,ai) ,  where f(.) is a linear time 
warping transformation that maps variable length X(sl)  
to a fixed length sequence of vectors Y = f (X(s i ) ) .  The 
specific model for Y is multi-variate Gaussian, gener- 
ally subject to some assumptions about the covariance 
structure to reduce the number of free parameters in 
the model. The posterior probability used in the clas- 
sification work here is obtained from this distribution 
according to 

p( f (X(s i ) )  I hi, si) p(ai, si) 
p(ai I f (X(s i ) ) ,  si) = Ea ,  p( f (X(s i ) )  I hi, si) p(ai, si)" 

There are more efficient methods for direct computation 
of the posterior distribution p(ai [ f(X(si)),  si), such as 
with tree-based classifiers or neural networks. However, 
the above formulation, which uses class-conditional den- 
sities of the observations, p(f(X(si)) [ai ,si) ,  has the 
advantage that we can directly compare the CIR ap- 
proach to the traditional approach and therefore better 
understand the issues associated with using fixed-length 
measurements and the effect of the segmentation score. 
In addition, this approach allows us to take advantage 
of recent improvements to the SSM, such as the dynam- 
ical system model [6], at a potentially lower cost due to 
subsampling of observations. 

2 .3 .  S e g m e n t a t i o n  C o m p o n e n t  

There are several possibilities for estimating the segmen- 
tation probability, and two fundamentally different ap- 
proaches are explored here. First we note that we can 
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estimate either p(S I x )  or p(S, X) for the segmentation 
probability, leading to the two equivalent expressions in 
0) .  

One method is to simply compute a mixture distribution 
of segment probabilities to find p(sl, X(si)): 

p(s , ,X(s0)  = 
J 

= ~ p ( X ( s , ) l s , , c J p ( s , , c J  (3) 
J 

where {cj } is a set of classes, such as linguistic classes or 
context-independent phones. In order to find the score 
for the complete sequence of observations, the terms in 
the summation in (3) are instances of the more tradi- 
tional formulation of (2). This method uses the complete 
observation sequence, as in [4], to determine the segmen- 
tation probabilities, as opposed to the features used for 
classification, which may be substantially reduced from 
the original observations and may lack some cues to seg- 
ment boundaries, such as transitional acoustic events. 

Another method for computing the segmentation prob- 
ability, similar to that presented in [2], is to find the 
posterior probability p(S [ X). In this approach, we use 
distributions that model presence versus absence of a 
segment boundary at each frame, based on local features. 
The segmentation probability is written as 

p(S IX) = H p ( s ,  [ X(s,)) (4) 
i 

and the probability of an individual segment of length L 
is 

L - 1  

p(s, Ix(s0) = p(bn IX(s,)) r I  p(Tix(s,)), (5) 
j=l  

where bL is the event that there is a boundary after frame 
L and bj is the event that there is not a boundary after 
the j th frame of the segment. We estimate the frame 
boundary probabilities as 

LK 
p(bj I X(si)) - 1 + LK 

where K = p(b)/p('b) and 

xj+  1%)" 

The component conditional probabilities are computed 
as  

p(xj, xj+, IT)  = ~ p ( x / ,  aj+l[~) p(~) (6) 

and 

p(zj, Zj+l I b~) = E E p(zj I/~l)p(zj+l [tim) P(fll, f12), 

(7) 
where fl ranges over the manner-of-articulation phoneme 
classes: stops, nasals, fricatives, liquids, vowels, and ad- 
ditionally, silence. 

The two segmentation models presented have different 
advantages. The first method makes use of the complete 
set of SSM phone models in determining likely bound- 
aries for each segment and hence may have a more com- 
plete model of the speech process. On the other hand, 
the second approach uses models explicitly trained to dif- 
ferentiate between boundary and non-boundary acoustic 
events. The best choice of segmentation score is an em- 
pirical question that we have begun to address in this 
w o r k .  

3. E X P E R I M E N T S  

Experiments have been conducted to determine the feasi- 
bility of the recognition approach described here. First, 
we wished to determine whether fixed-length measure- 
ments could be as effective in recognition as using the 
complete observation sequence, as is normally done in 
other SSM work and in HMMs. This test would tell 
whether the segmentation score can compensate for the 
use of fixed-length measurements. Second, we investi- 
gated the comparative performance of the two segmen- 
tation scoring mechanisms outlined in the previous sec- 
tion. 

3 .1 .  C I R  F e a s i b i l i t y  

The feasibility of fixed-length measurements was in- 
vestigated first in a phoneme classification framework. 
Since we planned to eventually test our algorithms in 
word recognition on the Resource Management (RM) 
database, our phone classification experiments were also 
run on this database. Since the RM database is not pho- 
netically labeled, we used an automatic labeling scheme 
to determine the reference phoneme sequence and seg- 
mentation for each sentence in the database. The la- 
beler, a context-dependent SSM, took the correct ortho- 
graphic transcription, a pronunciation dictionary, and 
the speech for a sentence and used a dynamic program- 
ming algorithm to find the best phonetic alignment. The 
procedure used an initial labeling produced by the BBN 
BYBLOS system [8] as a guide, but allowed some varia- 
tion in pronunciations, according to the dictionary, as 
well as in segmentation. The resulting alignment is 
flawed in comparison with carefully hand transcribed 
speech, as in the TIMIT database. However, our ex- 
perience has shown that using comparable models and 
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analysis, there is only about a 4-6% loss in classification 
performance (e.g., from 72% to 68% correct for context- 
independent models) between the two databases, and the 
RM labeling is adequate for making preliminary compar- 
isons of classification algorithms. The final test of any 
classification algorithm is made under the CIR formal- 
ism in word recognition experiments, for which the RM 
database is well suited. 

In classification, the observation vectors in each segment 
were linearly sampled to obtain a fixed number of vec- 
tors per segment, m = 5 frames. For observed segments 
of length less than five frames, the transformation re- 
peated some vectors more than once. The feature vector 
for each frame consisted of 14 Mel-warped cepstral co- 
efficients and their first differences as well as differenced 
energy. Each of the rn distributions of each segment 
were modeled as independent full covariance Gaussian 
distributions. Separate models were trained for males 
and females by iteratively segmenting and estimating the 
models using the algorithm described in [4]. The testing 
material came from the standard "Feb89" and "Oct89" 
test sets. In classification experiments using the Feb89 
test set, the percent correct is reported over the complete 
set of phoneme instances, 11752 for our transcription. 
Several simplifying assumptions were made to facilitate 
implementation. Only context-independent models were 
estimated, and the labels and segments of the observa- 
tion sequence were considered independent. 

On the Feb89 test set the classification results were 
65.8% correct when the entire observation sequence was 
used and 66.4% correct when a fixed number of obser- 
vations was used for each segment. This result indicates 
that, in classification, using fixed length measurements 
can work as well as using the entire observation. 

Having verified that fixed-length features are useful in 
classification, the next step was to evaluate their use in 
recognition with the CIR formalism. In recognition, we 
make use of the N-best formalism. Although originally 
developed as an interface between the speech and natu- 
ral language components of a spoken language system [9], 
this mechanism can also be used to rescore hypotheses 
with a variety of knowledge sources [10]. Each knowl- 
edge source produces its own score for every hypothesis, 
and the decision as to the most likely hypothesis is de- 
termined according to a weighted combination of scores 
from all knowledge sources. The algorithm reduces the 
search of more computationally expensive models, like 
the SSM, by eliminating very unlikely sentences in the 
first pass, performed with a less expensive model, such 
as the HMM. In this work, the BBN BYBLOS system 
[8] is used to generate 20 hypotheses per sentence. 

Using the N-best formalism, an experiment was run 
comparing the CIR recognizer to an SSM recognizer that 
uses all observations. The classifier for the CIR system 
was the same as that used in the previous experiment. 
The joint probability of segmentation and observations, 
p(X, S), was computed as in Equation (3), using a ver- 
sion of the SSM that considered the complete observa- 
tion sequence for a segment. That is, not just m, but all 
observation vectors in a segment were mapped to the dis- 
tributions and used in finding the score. The weights for 
combining scores in the N-best formalism were trained 
on the Feb89 test set. In this case the scores to be com- 
bined were simply the SSM score, the number of words 
and the number of phonemes in a sentence. 

In evaluating performance using the N-best formalism, 
the percent word error is computed from the highest- 
ranked of the rescored hypotheses. On the Feb89 test set 
the word error for both the classification-in-recognition 
method and the original recognition approach was 9.1%. 
To determine if these results were biased due to train- 
ing the weights for combining scores on the same test 
data, this experiment was repeated on the Oct89 test 
set using the weights developed on the Feb89 test set. 
The performance for the CIR recognizer was 9.4% word 
error (252 errors in a set of 2684 reference words) and 
the performance for the original approach using the com- 
plete observation sequence was 9.1% word error (244 er- 
rors). The performance of the new recognition formal- 
ism is thus very close to that of the original scheme, and 
in fact the difference between them could be attributed 
to differences associated with suboptimal N-best weight 
estimation techniques [11]. 

3 .2 .  S e g m e n t a t i o n  S c o r e  

As mentioned previously, some current systems use a 
classification scheme with no explicit probability of seg- 
mentation. We attempted to simulate this effect with 
the classification recognizer by simply suppressing the 
score for the joint probability of segmentation and ob- 
servations. This is equivalent to assuming that the seg- 
mentation probabilities are equally likely for all hypothe- 
ses considered. Scores were computed for the utterance 
with and without the p(X, S) term on the Feb89 test 
set. When just the classification scores were used, word 
error went from from 9.1% to 10.8%, an 18% degrada- 
tion in performance. Apparently, the joint probability of 
segmentation and observations has a significant effect in 
normalizing the posterior probability for better recogni- 
tion. 

Experiments were also run to compare the two meth- 
ods of segmentation scoring described above. In the first 
method, based on equation (3), the same analysis de- 
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scribed earlier was used at each frame (cepstra plus dif- 
ferenced cepstra and differenced energy) and the sum- 
mation was over the set of context independent phones. 
In the second method, which computes p(S IX) using 
equations (4) -  (7), we modeled each of the conditional 
densities in (6) and (7) as the joint, full covariance, Gaus- 
sian distribution of the cepstral parameters of the two 
frames adjoining the hypothesized boundary. In order 
to reduce the number of free parameters to estimate in 
the Gaussian model, we used only the cepstral coeffi- 
cients as features for each frame. On the Feb89 test 
set the first method had 9.1% combined word error for 
male and female speakers, while the second method had 
11.0% word error. Using the best weights for the N-best 
combination from this test set, the segmentation algo- 
rithms were also run on the Oct89 test set. In this case, 
the word error rates for the two methods were 9.4% and 
11.9%, respectively. 

This result suggests that the boundary-based segmenta- 
tion score yields performance that is worse than no seg- 
mentation score. However, the "no segmentation" case 
actually uses an implicit segmentation score in that the 
N hypotheses are assumed to have equally likely seg- 
mentations (while all other segmentations have proba- 
bility zero) and in that phoneme and word counts are 
used in the combined score. Although we suspect that 
the marginal distribution model for segmentation scores 
may still be preferable, clearly more experiments are 
needed with a larger number of sentence hypotheses to 
better understand the characteristics of the different ap- 
proaches. 

4. D I S C U S S I O N  

In summary, we have described an alternative approach 
to speech recognition that combines classification and 
segmentation scoring to more effectively use segmental 
features. Our pilot experiments demonstrate that the 
classification-in-recognition approach can achieve per- 
formance comparable to the traditional formalism when 
frame-based features and equivalent Gaussian distribu- 
tions are used, and that the segmentation score can be an 
important component of a classification approach. We 
anticipate performance gains with the additional use of 
segmental features in the classification component of the 
CIP~ model. We also plan to extend the model to incor- 
porate context-dependent units. 

Our initial experiments with the segmentation probabil- 
ity indicate that finding this component via marginal 
probabilities computed with a detailed model may be 
more accurate than estimating boundary likelihood 
based on local observations, although this conclusion 
should be verified with experiments using a larger num- 

ber of hypotheses per sentence than the 20 used so far. 
A number of improvements can be mode to both mod- 
els, including using different choices for mixture com- 
ponents and eliminating some of the independence as- 
sumptions. Additionally, in the second method we plan 
to increase both the number of features per frame and 
the number of boundary-odjacent frames considered in 
computing the boundary probabilities. Eventually a hy- 
brid method that combines elements of both approaches 
may prove to be the most effective. 
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